1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/**
* @file test.c
* @brief test program for 32-bit and 64-bit output of SFMT.
*
* @author Mutsuo Saito (Hiroshima-univ)
*
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
* University and The University of Tokyo.
* All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#include <stdio.h>
#include <limits.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include "SFMT.h"
#define BLOCK_SIZE 100000
#define BLOCK_SIZE64 50000
#define COUNT 1000
void check32(void);
void speed32(void);
void check64(void);
void speed64(void);
static w128_t array1[BLOCK_SIZE / 4];
static w128_t array2[10000 / 4];
#ifndef ONLY64
void check32(void) {
int i;
uint32_t *array32 = &array1[0].u[0];
uint32_t *array32_2 = &array2[0].u[0];
uint32_t ini[4] = {0x1234, 0x5678, 0x9abc, 0xdef0};
uint32_t r32;
sfmt_t sfmt;
if (sfmt_get_min_array_size32(&sfmt) > 10000) {
printf("array size too small!\n");
exit(1);
}
printf("%s\n32 bit generated randoms\n", sfmt_get_idstring(&sfmt));
printf("init_gen_rand__________\n");
/* 32 bit generation */
sfmt_init_gen_rand(&sfmt, 1234);
sfmt_fill_array32(&sfmt, array32, 10000);
sfmt_fill_array32(&sfmt, array32_2, 10000);
sfmt_init_gen_rand(&sfmt, 1234);
for (i = 0; i < 10000; i++) {
if (i < 1000) {
printf("%10u ", array32[i]);
if (i % 5 == 4) {
printf("\n");
}
}
r32 = sfmt_genrand_uint32(&sfmt);
if (r32 != array32[i]) {
printf("\nmismatch at %d array32:%x gen:%x\n",
i, array32[i], r32);
exit(1);
}
}
for (i = 0; i < 700; i++) {
r32 = sfmt_genrand_uint32(&sfmt);
if (r32 != array32_2[i]) {
printf("\nmismatch at %d array32_2:%x gen:%x\n",
i, array32_2[i], r32);
exit(1);
}
}
printf("\n");
sfmt_init_by_array(&sfmt, ini, 4);
#if defined(DEBUG)
printf("first init_by_array\n");
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 4; j++) {
printf("%08"PRIx32" ", sfmt.state[i].u[j]);
}
printf("\n");
}
#endif
printf("init_by_array__________\n");
sfmt_fill_array32(&sfmt, array32, 10000);
sfmt_fill_array32(&sfmt, array32_2, 10000);
sfmt_init_by_array(&sfmt, ini, 4);
#if defined(DEBUG)
printf("second init_by_array\n");
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 4; j++) {
printf("%08"PRIx32" ", sfmt.state[i].u[j]);
}
printf("\n");
}
#endif
for (i = 0; i < 10000; i++) {
if (i < 1000) {
printf("%10u ", array32[i]);
if (i % 5 == 4) {
printf("\n");
}
}
r32 = sfmt_genrand_uint32(&sfmt);
if (r32 != array32[i]) {
printf("\nmismatch at %d array32:%x gen:%x\n",
i, array32[i], r32);
exit(1);
}
}
for (i = 0; i < 700; i++) {
r32 = sfmt_genrand_uint32(&sfmt);
if (r32 != array32_2[i]) {
printf("\nmismatch at %d array32_2:%x gen:%x\n",
i, array32_2[i], r32);
exit(1);
}
}
}
void speed32(void) {
int i, j;
clock_t clo;
clock_t min = LONG_MAX;
uint32_t *array32 = (uint32_t *)array1;
sfmt_t sfmt;
if (sfmt_get_min_array_size32(&sfmt) > BLOCK_SIZE) {
printf("array size too small!\n");
exit(1);
}
/* 32 bit generation */
sfmt_init_gen_rand(&sfmt, 1234);
for (i = 0; i < 10; i++) {
clo = clock();
for (j = 0; j < COUNT; j++) {
sfmt_fill_array32(&sfmt, array32, BLOCK_SIZE);
}
clo = clock() - clo;
if (clo < min) {
min = clo;
}
}
printf("32 bit BLOCK:%.0f", (double)min * 1000/ CLOCKS_PER_SEC);
printf("ms for %u randoms generation\n",
BLOCK_SIZE * COUNT);
min = LONG_MAX;
sfmt_init_gen_rand(&sfmt, 1234);
for (i = 0; i < 10; i++) {
clo = clock();
for (j = 0; j < BLOCK_SIZE * COUNT; j++) {
sfmt_genrand_uint32(&sfmt);
}
clo = clock() - clo;
if (clo < min) {
min = clo;
}
}
printf("32 bit SEQUE:%.0f", (double)min * 1000 / CLOCKS_PER_SEC);
printf("ms for %u randoms generation\n",
BLOCK_SIZE * COUNT);
}
#endif
void check64(void) {
int i;
uint64_t *array64;
uint64_t *array64_2;
uint64_t r;
uint32_t ini[] = {5, 4, 3, 2, 1};
sfmt_t sfmt;
array64 = (uint64_t *)array1;
array64_2 = (uint64_t *)array2;
if (sfmt_get_min_array_size64(&sfmt) > 5000) {
printf("array size too small!\n");
exit(1);
}
printf("%s\n64 bit generated randoms\n", sfmt_get_idstring(&sfmt));
printf("init_gen_rand__________\n");
/* 64 bit generation */
sfmt_init_gen_rand(&sfmt, 4321);
sfmt_fill_array64(&sfmt, array64, 5000);
sfmt_fill_array64(&sfmt, array64_2, 5000);
sfmt_init_gen_rand(&sfmt, 4321);
for (i = 0; i < 5000; i++) {
if (i < 1000) {
printf("%20"PRIu64" ", array64[i]);
if (i % 3 == 2) {
printf("\n");
}
}
r = sfmt_genrand_uint64(&sfmt);
if (r != array64[i]) {
printf("\nmismatch at %d array64:%"PRIx64" gen:%"PRIx64"\n",
i, array64[i], r);
exit(1);
}
}
printf("\n");
for (i = 0; i < 700; i++) {
r = sfmt_genrand_uint64(&sfmt);
if (r != array64_2[i]) {
printf("\nmismatch at %d array64_2:%"PRIx64" gen:%"PRIx64"\n",
i, array64_2[i], r);
exit(1);
}
}
printf("init_by_array__________\n");
/* 64 bit generation */
sfmt_init_by_array(&sfmt, ini, 5);
sfmt_fill_array64(&sfmt, array64, 5000);
sfmt_fill_array64(&sfmt, array64_2, 5000);
sfmt_init_by_array(&sfmt, ini, 5);
for (i = 0; i < 5000; i++) {
if (i < 1000) {
printf("%20"PRIu64" ", array64[i]);
if (i % 3 == 2) {
printf("\n");
}
}
r = sfmt_genrand_uint64(&sfmt);
if (r != array64[i]) {
printf("\nmismatch at %d array64:%"PRIx64" gen:%"PRIx64"\n",
i, array64[i], r);
exit(1);
}
}
printf("\n");
for (i = 0; i < 700; i++) {
r = sfmt_genrand_uint64(&sfmt);
if (r != array64_2[i]) {
printf("\nmismatch at %d array64_2:%"PRIx64" gen:%"PRIx64"\n",
i, array64_2[i], r);
exit(1);
}
}
}
void speed64(void) {
int i, j;
uint64_t clo;
uint64_t min = LONG_MAX;
uint64_t *array64 = (uint64_t *)array1;
sfmt_t sfmt;
if (sfmt_get_min_array_size64(&sfmt) > BLOCK_SIZE64) {
printf("array size too small!\n");
exit(1);
}
/* 64 bit generation */
sfmt_init_gen_rand(&sfmt, 1234);
for (i = 0; i < 10; i++) {
clo = clock();
for (j = 0; j < COUNT; j++) {
sfmt_fill_array64(&sfmt, array64, BLOCK_SIZE64);
}
clo = clock() - clo;
if (clo < min) {
min = clo;
}
}
printf("64 bit BLOCK:%.0f", (double)min * 1000/ CLOCKS_PER_SEC);
printf("ms for %u randoms generation\n",
BLOCK_SIZE64 * COUNT);
min = LONG_MAX;
sfmt_init_gen_rand(&sfmt, 1234);
for (i = 0; i < 10; i++) {
clo = clock();
for (j = 0; j < BLOCK_SIZE64 * COUNT; j++) {
sfmt_genrand_uint64(&sfmt);
}
clo = clock() - clo;
if (clo < min) {
min = clo;
}
}
printf("64 bit SEQUE:%.0f", (double)min * 1000 / CLOCKS_PER_SEC);
printf("ms for %u randoms generation\n",
BLOCK_SIZE64 * COUNT);
}
int main(int argc, char *argv[]) {
int i;
int speed = 0;
int bit64 = 0;
#ifndef ONLY64
int bit32 = 0;
#endif
for (i = 1; i < argc; i++) {
if (strncmp(argv[1],"-s", 2) == 0) {
speed = 1;
}
if (strncmp(argv[1],"-b64", 4) == 0) {
bit64 = 1;
}
#ifndef ONLY64
if (strncmp(argv[1],"-b32", 4) == 0) {
bit32 = 1;
}
#endif
}
#ifdef ONLY64
if (speed + bit64 == 0) {
printf("usage:\n%s [-s | -b64]\n", argv[0]);
return 0;
}
#else
if (speed + bit32 + bit64 == 0) {
printf("usage:\n%s [-s | -b32 | -b64]\n", argv[0]);
return 0;
}
#endif
if (speed) {
#ifndef ONLY64
speed32();
#endif
speed64();
}
#ifndef ONLY64
if (bit32) {
check32();
}
#endif
if (bit64) {
check64();
}
return 0;
}
|