summaryrefslogtreecommitdiff
path: root/SFMT/SFMT.c
blob: 1092971ba2f7f14e8408768e1781d665c0c1aa86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/**
 * @file  SFMT.c
 * @brief SIMD oriented Fast Mersenne Twister(SFMT)
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University.
 * Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
 * University and The University of Tokyo.
 * All rights reserved.
 *
 * The 3-clause BSD License is applied to this software, see
 * LICENSE.txt
 */

#if defined(__cplusplus)
extern "C" {
#endif

#include <string.h>
#include <assert.h>
#include "SFMT.h"
#include "SFMT-params.h"
#include "SFMT-common.h"

#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
  #if defined(__GNUC__)
    #error "-DONLY64 must be specified with -DBIG_ENDIAN64"
  #endif
#undef ONLY64
#endif

/**
 * parameters used by sse2.
 */
static const w128_t sse2_param_mask = {{SFMT_MSK1, SFMT_MSK2,
					SFMT_MSK3, SFMT_MSK4}};
/*----------------
  STATIC FUNCTIONS
  ----------------*/
inline static int idxof(int i);
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(sfmt_t * sfmt);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
inline static void swap(w128_t *array, int size);
#endif

#if defined(HAVE_ALTIVEC)
  #include "SFMT-alti.h"
#elif defined(HAVE_SSE2)
  #include "SFMT-sse2.h"
#endif

/**
 * This function simulate a 64-bit index of LITTLE ENDIAN
 * in BIG ENDIAN machine.
 */
#ifdef ONLY64
inline static int idxof(int i) {
    return i ^ 1;
}
#else
inline static int idxof(int i) {
    return i;
}
#endif

#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
 * This function fills the user-specified array with pseudorandom
 * integers.
 *
 * @param sfmt SFMT internal state
 * @param array an 128-bit array to be filled by pseudorandom numbers.
 * @param size number of 128-bit pseudorandom numbers to be generated.
 */
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) {
    int i, j;
    w128_t *r1, *r2;

    r1 = &sfmt->state[SFMT_N - 2];
    r2 = &sfmt->state[SFMT_N - 1];
    for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
	do_recursion(&array[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < SFMT_N; i++) {
	do_recursion(&array[i], &sfmt->state[i],
		     &array[i + SFMT_POS1 - SFMT_N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < size - SFMT_N; i++) {
	do_recursion(&array[i], &array[i - SFMT_N],
		     &array[i + SFMT_POS1 - SFMT_N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (j = 0; j < 2 * SFMT_N - size; j++) {
	sfmt->state[j] = array[j + size - SFMT_N];
    }
    for (; i < size; i++, j++) {
	do_recursion(&array[i], &array[i - SFMT_N],
		     &array[i + SFMT_POS1 - SFMT_N], r1, r2);
	r1 = r2;
	r2 = &array[i];
	sfmt->state[j] = array[i];
    }
}
#endif

#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
inline static void swap(w128_t *array, int size) {
    int i;
    uint32_t x, y;

    for (i = 0; i < size; i++) {
	x = array[i].u[0];
	y = array[i].u[2];
	array[i].u[0] = array[i].u[1];
	array[i].u[2] = array[i].u[3];
	array[i].u[1] = x;
	array[i].u[3] = y;
    }
}
#endif
/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func1(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}

/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func2(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}

/**
 * This function certificate the period of 2^{MEXP}
 * @param sfmt SFMT internal state
 */
static void period_certification(sfmt_t * sfmt) {
    int inner = 0;
    int i, j;
    uint32_t work;
    uint32_t *psfmt32 = &sfmt->state[0].u[0];
    const uint32_t parity[4] = {SFMT_PARITY1, SFMT_PARITY2,
				SFMT_PARITY3, SFMT_PARITY4};

    for (i = 0; i < 4; i++)
	inner ^= psfmt32[idxof(i)] & parity[i];
    for (i = 16; i > 0; i >>= 1)
	inner ^= inner >> i;
    inner &= 1;
    /* check OK */
    if (inner == 1) {
	return;
    }
    /* check NG, and modification */
    for (i = 0; i < 4; i++) {
	work = 1;
	for (j = 0; j < 32; j++) {
	    if ((work & parity[i]) != 0) {
		psfmt32[idxof(i)] ^= work;
		return;
	    }
	    work = work << 1;
	}
    }
}

/*----------------
  PUBLIC FUNCTIONS
  ----------------*/
#define UNUSED_VARIABLE(x) (void)(x)
/**
 * This function returns the identification string.
 * The string shows the word size, the Mersenne exponent,
 * and all parameters of this generator.
 * @param sfmt SFMT internal state
 */
const char *sfmt_get_idstring(sfmt_t * sfmt) {
    UNUSED_VARIABLE(sfmt);
    return SFMT_IDSTR;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array32() function.
 * @param sfmt SFMT internal state
 * @return minimum size of array used for fill_array32() function.
 */
int sfmt_get_min_array_size32(sfmt_t * sfmt) {
    UNUSED_VARIABLE(sfmt);
    return SFMT_N32;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array64() function.
 * @param sfmt SFMT internal state
 * @return minimum size of array used for fill_array64() function.
 */
int sfmt_get_min_array_size64(sfmt_t * sfmt) {
    UNUSED_VARIABLE(sfmt);
    return SFMT_N64;
}

#if !defined(HAVE_SSE2) && !defined(HAVE_ALTIVEC)
/**
 * This function fills the internal state array with pseudorandom
 * integers.
 * @param sfmt SFMT internal state
 */
void sfmt_gen_rand_all(sfmt_t * sfmt) {
    int i;
    w128_t *r1, *r2;

    r1 = &sfmt->state[SFMT_N - 2];
    r2 = &sfmt->state[SFMT_N - 1];
    for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
	do_recursion(&sfmt->state[i], &sfmt->state[i],
		     &sfmt->state[i + SFMT_POS1], r1, r2);
	r1 = r2;
	r2 = &sfmt->state[i];
    }
    for (; i < SFMT_N; i++) {
	do_recursion(&sfmt->state[i], &sfmt->state[i],
		     &sfmt->state[i + SFMT_POS1 - SFMT_N], r1, r2);
	r1 = r2;
	r2 = &sfmt->state[i];
    }
}
#endif

#ifndef ONLY64
/**
 * This function generates pseudorandom 32-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 624 and a
 * multiple of four.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param sfmt SFMT internal state
 * @param array an array where pseudorandom 32-bit integers are filled
 * by this function.  The pointer to the array must be \b "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 32-bit pseudorandom integers to be
 * generated.  size must be a multiple of 4, and greater than or equal
 * to (MEXP / 128 + 1) * 4.
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
void sfmt_fill_array32(sfmt_t * sfmt, uint32_t *array, int size) {
    assert(sfmt->idx == SFMT_N32);
    assert(size % 4 == 0);
    assert(size >= SFMT_N32);

    gen_rand_array(sfmt, (w128_t *)array, size / 4);
    sfmt->idx = SFMT_N32;
}
#endif

/**
 * This function generates pseudorandom 64-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 312 and a
 * multiple of two.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * @param sfmt SFMT internal state
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param array an array where pseudorandom 64-bit integers are filled
 * by this function.  The pointer to the array must be "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 64-bit pseudorandom integers to be
 * generated.  size must be a multiple of 2, and greater than or equal
 * to (MEXP / 128 + 1) * 2
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
void sfmt_fill_array64(sfmt_t * sfmt, uint64_t *array, int size) {
    assert(sfmt->idx == SFMT_N32);
    assert(size % 2 == 0);
    assert(size >= SFMT_N64);

    gen_rand_array(sfmt, (w128_t *)array, size / 2);
    sfmt->idx = SFMT_N32;

#if defined(BIG_ENDIAN64) && !defined(ONLY64)
    swap((w128_t *)array, size /2);
#endif
}

/**
 * This function initializes the internal state array with a 32-bit
 * integer seed.
 *
 * @param sfmt SFMT internal state
 * @param seed a 32-bit integer used as the seed.
 */
void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed) {
    int i;

    uint32_t *psfmt32 = &sfmt->state[0].u[0];

    psfmt32[idxof(0)] = seed;
    for (i = 1; i < SFMT_N32; i++) {
	psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
					    ^ (psfmt32[idxof(i - 1)] >> 30))
	    + i;
    }
    sfmt->idx = SFMT_N32;
    period_certification(sfmt);
}

/**
 * This function initializes the internal state array,
 * with an array of 32-bit integers used as the seeds
 * @param sfmt SFMT internal state
 * @param init_key the array of 32-bit integers, used as a seed.
 * @param key_length the length of init_key.
 */
void sfmt_init_by_array(sfmt_t * sfmt, uint32_t *init_key, int key_length) {
    int i, j, count;
    uint32_t r;
    int lag;
    int mid;
    int size = SFMT_N * 4;
    uint32_t *psfmt32 = &sfmt->state[0].u[0];

    if (size >= 623) {
	lag = 11;
    } else if (size >= 68) {
	lag = 7;
    } else if (size >= 39) {
	lag = 5;
    } else {
	lag = 3;
    }
    mid = (size - lag) / 2;

    memset(sfmt, 0x8b, sizeof(sfmt_t));
    if (key_length + 1 > SFMT_N32) {
	count = key_length + 1;
    } else {
	count = SFMT_N32;
    }
    r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
	      ^ psfmt32[idxof(SFMT_N32 - 1)]);
    psfmt32[idxof(mid)] += r;
    r += key_length;
    psfmt32[idxof(mid + lag)] += r;
    psfmt32[idxof(0)] = r;

    count--;
    for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
		  ^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
	psfmt32[idxof((i + mid) % SFMT_N32)] += r;
	r += init_key[j] + i;
	psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % SFMT_N32;
    }
    for (; j < count; j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
		  ^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
	psfmt32[idxof((i + mid) % SFMT_N32)] += r;
	r += i;
	psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % SFMT_N32;
    }
    for (j = 0; j < SFMT_N32; j++) {
	r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % SFMT_N32)]
		  + psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
	psfmt32[idxof((i + mid) % SFMT_N32)] ^= r;
	r -= i;
	psfmt32[idxof((i + mid + lag) % SFMT_N32)] ^= r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % SFMT_N32;
    }

    sfmt->idx = SFMT_N32;
    period_certification(sfmt);
}
#if defined(__cplusplus)
}
#endif