#pragma once /** * @file SFMT.h * * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom * number generator using C structure. * * @author Mutsuo Saito (Hiroshima University) * @author Makoto Matsumoto (The University of Tokyo) * * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima * University. * Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima * University and The University of Tokyo. * All rights reserved. * * The 3-clause BSD License is applied to this software, see * LICENSE.txt * * @note We assume that your system has inttypes.h. If your system * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t, * and you have to define PRIu64 and PRIx64 in this file as follows: * @verbatim typedef unsigned int uint32_t typedef unsigned long long uint64_t #define PRIu64 "llu" #define PRIx64 "llx" @endverbatim * uint32_t must be exactly 32-bit unsigned integer type (no more, no * less), and uint64_t must be exactly 64-bit unsigned integer type. * PRIu64 and PRIx64 are used for printf function to print 64-bit * unsigned int and 64-bit unsigned int in hexadecimal format. */ #ifndef SFMTST_H #define SFMTST_H #if defined(__cplusplus) extern "C" { #endif #include #include #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) #include #elif defined(_MSC_VER) || defined(__BORLANDC__) typedef unsigned int uint32_t; typedef unsigned __int64 uint64_t; #define inline __inline #else #include #if defined(__GNUC__) #define inline __inline__ #endif #endif #ifndef PRIu64 #if defined(_MSC_VER) || defined(__BORLANDC__) #define PRIu64 "I64u" #define PRIx64 "I64x" #else #define PRIu64 "llu" #define PRIx64 "llx" #endif #endif #include "SFMT-params.h" /*------------------------------------------ 128-bit SIMD like data type for standard C ------------------------------------------*/ #if defined(HAVE_ALTIVEC) #if !defined(__APPLE__) #include #endif /** 128-bit data structure */ union W128_T { vector unsigned int s; uint32_t u[4]; uint64_t u64[2]; }; #elif defined(HAVE_SSE2) #include /** 128-bit data structure */ union W128_T { uint32_t u[4]; uint64_t u64[2]; __m128i si; }; #else /** 128-bit data structure */ union W128_T { uint32_t u[4]; uint64_t u64[2]; }; #endif /** 128-bit data type */ typedef union W128_T w128_t; /** * SFMT internal state */ struct SFMT_T { /** the 128-bit internal state array */ w128_t state[SFMT_N]; /** index counter to the 32-bit internal state array */ int idx; }; typedef struct SFMT_T sfmt_t; void sfmt_fill_array32(sfmt_t * sfmt, uint32_t * array, int size); void sfmt_fill_array64(sfmt_t * sfmt, uint64_t * array, int size); void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed); void sfmt_init_by_array(sfmt_t * sfmt, uint32_t * init_key, int key_length); const char * sfmt_get_idstring(sfmt_t * sfmt); int sfmt_get_min_array_size32(sfmt_t * sfmt); int sfmt_get_min_array_size64(sfmt_t * sfmt); void sfmt_gen_rand_all(sfmt_t * sfmt); #ifndef ONLY64 /** * This function generates and returns 32-bit pseudorandom number. * init_gen_rand or init_by_array must be called before this function. * @param sfmt SFMT internal state * @return 32-bit pseudorandom number */ inline static uint32_t sfmt_genrand_uint32(sfmt_t * sfmt) { uint32_t r; uint32_t * psfmt32 = &sfmt->state[0].u[0]; if (sfmt->idx >= SFMT_N32) { sfmt_gen_rand_all(sfmt); sfmt->idx = 0; } r = psfmt32[sfmt->idx++]; return r; } #endif /** * This function generates and returns 64-bit pseudorandom number. * init_gen_rand or init_by_array must be called before this function. * The function gen_rand64 should not be called after gen_rand32, * unless an initialization is again executed. * @param sfmt SFMT internal state * @return 64-bit pseudorandom number */ inline static uint64_t sfmt_genrand_uint64(sfmt_t * sfmt) { #if defined(BIG_ENDIAN64) && !defined(ONLY64) uint32_t * psfmt32 = &sfmt->state[0].u[0]; uint32_t r1, r2; #else uint64_t r; #endif uint64_t * psfmt64 = &sfmt->state[0].u64[0]; assert(sfmt->idx % 2 == 0); if (sfmt->idx >= SFMT_N32) { sfmt_gen_rand_all(sfmt); sfmt->idx = 0; } #if defined(BIG_ENDIAN64) && !defined(ONLY64) r1 = psfmt32[sfmt->idx]; r2 = psfmt32[sfmt->idx + 1]; sfmt->idx += 2; return ((uint64_t)r2 << 32) | r1; #else r = psfmt64[sfmt->idx / 2]; sfmt->idx += 2; return r; #endif } /* ================================================= The following real versions are due to Isaku Wada ================================================= */ /** * converts an unsigned 32-bit number to a double on [0,1]-real-interval. * @param v 32-bit unsigned integer * @return double on [0,1]-real-interval */ inline static double sfmt_to_real1(uint32_t v) { return v * (1.0/4294967295.0); /* divided by 2^32-1 */ } /** * generates a random number on [0,1]-real-interval * @param sfmt SFMT internal state * @return double on [0,1]-real-interval */ inline static double sfmt_genrand_real1(sfmt_t * sfmt) { return sfmt_to_real1(sfmt_genrand_uint32(sfmt)); } /** * converts an unsigned 32-bit integer to a double on [0,1)-real-interval. * @param v 32-bit unsigned integer * @return double on [0,1)-real-interval */ inline static double sfmt_to_real2(uint32_t v) { return v * (1.0/4294967296.0); /* divided by 2^32 */ } /** * generates a random number on [0,1)-real-interval * @param sfmt SFMT internal state * @return double on [0,1)-real-interval */ inline static double sfmt_genrand_real2(sfmt_t * sfmt) { return sfmt_to_real2(sfmt_genrand_uint32(sfmt)); } /** * converts an unsigned 32-bit integer to a double on (0,1)-real-interval. * @param v 32-bit unsigned integer * @return double on (0,1)-real-interval */ inline static double sfmt_to_real3(uint32_t v) { return (((double)v) + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /** * generates a random number on (0,1)-real-interval * @param sfmt SFMT internal state * @return double on (0,1)-real-interval */ inline static double sfmt_genrand_real3(sfmt_t * sfmt) { return sfmt_to_real3(sfmt_genrand_uint32(sfmt)); } /** * converts an unsigned 32-bit integer to double on [0,1) * with 53-bit resolution. * @param v 32-bit unsigned integer * @return double on [0,1)-real-interval with 53-bit resolution. */ inline static double sfmt_to_res53(uint64_t v) { return v * (1.0/18446744073709551616.0L); } /** * generates a random number on [0,1) with 53-bit resolution * @param sfmt SFMT internal state * @return double on [0,1) with 53-bit resolution */ inline static double sfmt_genrand_res53(sfmt_t * sfmt) { return sfmt_to_res53(sfmt_genrand_uint64(sfmt)); } /* ================================================= The following function are added by Saito. ================================================= */ /** * generates a random number on [0,1) with 53-bit resolution from two * 32 bit integers */ inline static double sfmt_to_res53_mix(uint32_t x, uint32_t y) { return sfmt_to_res53(x | ((uint64_t)y << 32)); } /** * generates a random number on [0,1) with 53-bit resolution * using two 32bit integers. * @param sfmt SFMT internal state * @return double on [0,1) with 53-bit resolution */ inline static double sfmt_genrand_res53_mix(sfmt_t * sfmt) { uint32_t x, y; x = sfmt_genrand_uint32(sfmt); y = sfmt_genrand_uint32(sfmt); return sfmt_to_res53_mix(x, y); } #if defined(__cplusplus) } #endif #endif